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EBOV  
Ebola virus 
 
EndoU 
Uridine-specific endoribonuclease 
 
FDA 
Food and Drug Administration 
 
HIV 
Human immunodeficient virus  
 
MERS-CoV 
Middle east respiratory syndrome coronavirus 
 
NSP 
Non-structural protein 
 
RBD 
Receptor binding domain 
 
RdRp 
RNA dependent RNA polymerase  
 
SARS-CoV 
Sudden acute respiratory syndrome coronavirus 
 
S protein 
Spike protein 
 
TMPRSS2 
Transmembrane protease serine type 2 
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Abstract 

COVID-19 is a novel disease caused by the SARS-CoV-2 virus that was first detected in 

December of 2019 in Wuhan, China and has rapidly spread worldwide. The search for a 

suitable vaccine as well as effective therapeutics for the treatment of COVID-19 is underway. 

Drug repurposing screens provide a useful and effective solution for identifying potential 

therapeutics against SARS-CoV-2. For example, the experimental drug remdesivir, originally 

developed for Ebola virus infections, has been approved by the FDA as an emergency use 

treatment for COVID-19. However, the efficacy and toxicity of this drug needs further 

improvements. In this review, we discuss recent findings on the pathology of coronaviruses and 

the drug targets for the treatment of COVID-19. Both SARS-CoV-2 specific inhibitors and broad-

spectrum anti-coronavirus drugs against SARS-CoV, MERS-CoV, and SARS-CoV-2 will be 

valuable additions to the anti-SARS-CoV-2 armament. A multi-target treatment approach with 

synergistic drug combinations containing different mechanisms of action may be a practical 

therapeutic strategy for the treatment of severe COVID-19. 
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Significance Statement 

Understanding the biology and pathology of RNA viruses is critical to accomplish the 

challenging task of developing vaccines and therapeutics against SARS-CoV-2. This review 

highlights the anti-SARS-CoV-2 drug targets and therapeutic development strategies for 

COVID-19 treatment.  
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Introduction 

Coronaviruses are enveloped, single-stranded, positive-sensed RNA viruses belonging 

to the family Coronaviridae with genomes ranging from 26 to 32 kilobases in length. Several 

known strains of coronaviruses such as OC43, HKU, 229E5, and NL63 are pathogenic to 

humans and associated with mild common cold symptoms (Gordon et al., 2020). However, in 

the past two decades, three notable coronaviruses of the pandemic scale have emerged and 

produced severe clinical symptoms including acute respiratory distress syndrome (ARDS). In 

2002, the coronavirus strain  SARS-CoV, named for causing severe acute respiratory syndrome 

(SARS), originated in the Guangdong province of China (Drosten et al., 2003). In 2012, another 

coronavirus with reported clinical similarity to SARS-CoV was first detected in Saudi Arabia, and 

later identified as Middle East respiratory syndrome coronavirus (MERS-CoV) (Zaki et al., 

2012). SARS-CoV resulted in more than 8000 human infections and 774 deaths in 37 countries 

between 2002-2003 (Lu et al., 2020) before disappearing from the population due to stringent 

quarantine precautions. MERS-CoV infections, however, are a continued threat to global health. 

Since September 2012, there have been 2494 laboratory-confirmed cases and 858 fatalities, 

including 38 deaths following a single introduction into South Korea (Lu et al., 2020). Despite 

significant efforts, vaccines or effective drugs for the prevention or treatment of either SARS-

CoV or MERS-CoV are still not available.   

In December 2019, a new virus initially called the 2019 novel coronavirus (2019-nCoV) 

emerged in the city of Wuhan, China. It produced clinical symptoms that included fever, dry 

cough, dyspnea, headache, pneumonia with potentially progressive respiratory failure owing to 

alveolar damage, and even death (Zhou et al., 2020). Because sequence analysis of this novel 

coronavirus identified it as closely related to the SARS-CoV strain from 2002-2003, the World 

Health Organization (WHO) renamed the new virus as SARS-CoV-2 in February 2020. The 

disease caused by SARS-CoV-2 has been named coronavirus disease 2019 (COVID-19). Like 
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SARS-CoV and MERS-CoV infections, ARDS can be induced in severe cases of COVID-19. 

ARDS is largely mediated through the significant release of pro-inflammatory cytokines that 

results in a cytokine storm, which likely triggers multi-organ failure and contributes to increased 

death rates (Li et al., 2020). Dependent on several factors such as pre-existing conditions and 

the immune response, severe disease can precipitate pathophysiological effects on the heart, 

kidney, liver and the central nervous system. Examples include myocardial injury, arrhythmias, 

increased risk of myocardial infarction, liver dysfunction, kidney failure, neurological 

complications such as ataxia, seizures, neuralgia, acute cerebrovascular disease and 

encephalopathy (See (Zaim et al., 2020) for an in depth review). In addition, SARS-CoV-2 may 

have tropism towards tissues other than the lungs, which could contribute to disease 

exacerbation (Puelles et al., 2020).  

Genome sequencing and phylogenetic analyses have confirmed that SARS-CoV, 

MERS-CoV and SARS-CoV-2 are all zoonotic diseases that originated from bat coronaviruses 

leading to infections in humans either directly or indirectly through an intermediate host (Lu et 

al., 2020). Unfortunately, predicting the zoonotic potential of newly detected viruses has been 

severely hindered by a lack of functional data for viral sequences in these animals (Letko et al., 

2020). Unlike SARS-CoV or MERS-CoV, where transmissions mainly occur in a nosocomial 

manner, SARS-CoV-2 appears to spread more efficiently as viral shedding may also occur in 

asymptomatic individuals prior to the onset of symptoms. Asymptomatic transmission increases 

its pandemic potential several-fold (Tu et al., 2020). Indeed, COVID-19, was declared a 

pandemic by the World Health Organization on March 11th, 2020 because there was a dramatic 

and exponential increase in the number of cases and deaths associated with the disease within 

several months. Currently, close to the end of June 2020, there are over 10 million cases 

worldwide with over 500,000 deaths. Treatment options for COVID-19 are limited while several 

vaccines against SARS-CoV-2 are in the works. On April 29, 2020, NIH announced that 
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remdesivir, an experimental drug originally developed as an RNA dependent RNA polymerase 

(RdRP) inhibitor against Ebola virus (EBOV), showed positive efficacy in a clinical phase 3 trial 

for COVID-19. Hospitalized COVID-19 patients treated with remdesivir shortened the time to 

recovery by 31% (from 15 days to 11 days). On May 1, 2020, the US Food and Drug 

Administration (FDA) granted emergency use authorization of remdesivir for treatment of 

COVID-19, while a formal approval is still pending.  

 

Overview of SARS-CoV-2 genome and protein constituents 

SARS-CoV, MERS-CoV and SARS-CoV-2 belong to the Betacoronavirus genus, whose 

genomes typically contain 5′-methylated caps at the N-terminus and a 3′-poly-A tail at the C-

terminus with a highly conserved order of genes related to replication/transcription and 

structural components. The replication and transcription related gene is translated into two large 

non-structural polyproteins by two distinct but overlapping open reading frames translated by 

ribosomal frameshifting (Tu et al., 2020). The overlapping open reading frame, comprising two-

thirds of the coronavirus genome, encodes the large replicase polyproteins 1a and 1b (pp1a and 

pp1b) which are cleaved by papain-like cysteine protease (PLpro) and 3C-like serine protease 

(3CLpro, also called Mpro). This cleavage produces 16 non-structural proteins (Nsp) including 

important enzymes involved in the transcription and replication of coronaviruses such as RNA-

dependent RNA polymerase (RdRP), helicase (Nsp13), and exonuclease (Nsp14) (Tang et al., 

2020). The 3′ one-third of the coronavirus genome is translated from subgenomic RNAs, and 

encodes the structural proteins spike (S), envelope (E), and membrane (M) that constitute the 

viral coat, and the nucleocapsid (N) protein that packages the viral genome (Tu et al., 2020). 

These structural proteins are essential for virus–host cell binding and virus assembly. Upon 

translation, the S, E, and M structural proteins are inserted into the rough endoplasmic reticulum 

to travel along the secretory pathway to the endoplasmic reticulum-Golgi apparatus intermediate 
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compartment or coronavirus particle assembly and subsequent release from the cell via 

exocytosis (Tang et al., 2020).  

 

Viral entry through the binding of SARS-CoV-2 spike proteins to ACE2 receptor  

The S proteins of SARS-CoV, required for viral entry into the host target cell, are 

synthesized as inactive precursors and become activated only upon proteolysis (Gierer et al., 

2013). The S protein has two functional domains called S1 and S2. S1 contains an N-terminal 

domain (NTD) and a receptor binding domain (RBD). The receptor binding motif (RBM) is 

located within the carboxy-terminal half of the RBD and contains residues that enable 

attachment of the S protein to a host cell receptor (Letko et al., 2020). The S2 subunit drives the 

fusion of viral and host membrane subsequent to cleavage, or ’priming,’ by cellular proteases. 

SARS-CoV is known to gain entry into permissive host cells through interactions of the SARS-S 

RBD with the cell surface receptor angiotensin converting enzyme 2 (ACE2) (Wang et al., 

2008). ACE2 is a negative regulator of the renin-angiotensin system and counterbalances the 

function of angiotensin converting enzyme (ACE), thereby maintaining blood pressure 

homeostasis (Kuba et al., 2005). It was shown in animal models that ACE2 promotes anti-

inflammation, anti-fibrosis, and vasodilation, whereas ACE promotes pro-inflammation, fibrosis, 

vasoconstriction, and severe lung injury (Kuba et al., 2005). Further, through S protein binding, 

SARS-CoV downregulates ACE2 receptor and therefore this process not only leads to viral 

entry, but also potentially contributes to severe lung injury as the ACE2 pathway has protective 

functions in many organs. Since 83% of ACE2-expressing cells are alveolar epithelial type II 

cells, and these cells contain high levels of multiple viral process-related genes, including 

regulatory genes for viral processes, viral life cycle, viral assembly, and viral genome 

replication, they can facilitate coronaviral replication in the lung (Zhao et al., 2020). Sequence 

analysis showed that SARS-CoV-2 genome is very similar to SARS-CoV with a only a few 
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differences in their complement of 3’ open reading frames that do not encode structural proteins 

(Gordon et al., 2020). Specifically, the S proteins of SARS-CoV-2 and SARS-CoV share 76.5% 

identity in amino acid sequences and have a high degree of homology (Xu et al., 2020b). SARS-

CoV-2 also uses ACE2 as a cellular entry receptor as, in otherwise non-susceptible cells to 

SARS-CoV-2 infection, overexpressing human or bat ACE2 mediates SARS-CoV-2 infection 

and replication (Hoffmann et al., 2020a; Zhou et al., 2020). In addition, SARS-CoV-2 does not 

utilize other receptors such as dipeptidyl peptidase 4 (DPP4), used by MERS-CoV, or the 

human aminopeptidase N (hAPN) used by human CoV 229E (Zhou et al., 2020) (Ou et al., 

2020). Several groups have now identified the RBD in SARS-CoV-2 and have confirmed by 

biochemical analyses as well as crystal structure prediction analyses that this domain binds 

strongly to both human and bat ACE2 receptor with a binding affinity significantly higher than 

that of SARS-CoV to the ACE2 receptor (Tai et al., 2020; Wan et al., 2020; Wrapp et al., 2020; 

Xu et al., 2020b). There has been much speculation that the high affinity binding of SARS-CoV-

2 to ACE2 could mediate the increased potential for transmissibility and severity of infection. For 

instance, the coronavirus NL63 also uses the same ACE2 receptor for entry into the host cell as 

SARS-CoV, but the virus entry and outcome are vastly different, with SARS resulting in severe 

respiratory distress and NL63 resulting in only a mild respiratory infection (Mathewson et al., 

2008). This led the authors to suggest that a lower-affinity interaction with NL63 for ACE-2 may 

partially explain the different pathological consequences of infection. It has been speculated that 

in addition to the ACE2 receptor, SARS-CoV-2 could employ other receptors for host cell entry. 

For example, the S protein of SARS-CoV-2 has a conserved RGD motif known to bind integrins, 

which is not found in other coronaviruses (Sigrist et al., 2020). This motif lies within the RBD of 

the S proteins of SARS-CoV-2, close to the ACE2 receptor-binding region (Sigrist et al., 2020). 

SARS-CoV-2 S protein can also interact with sialic acid receptors of the cells in the upper 

airways similar to MERS-CoV (Milanetti et al., 2020). Although the functional importance of 

integrins or sialic acid receptors in mediating SARS-CoV-2 S entry remains to be determined, 
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these may potentially increase cell tropism, viral pathogenicity, and transmission of SARS-CoV-

2.  

 

SARS-CoV-2 has multiple viral entry mechanisms  

  In general, coronaviruses deliver their genomes to the host cytosol by two known 

methods: directly fusing with the plasma membrane at the cell surface in a pH-independent 

manner, or utilizing the host cell’s endocytic machinery in which the endocytosed virions are 

subjected to an activation step in the endosome. Endocytic activation is typically mediated by 

the acidic endosomal pH, resulting in the fusion of the viral and endosomal membranes and 

release of the viral genome into the cytosol (Wang et al., 2008). Fusion with the cell membrane 

requires that the S2 domain of the S protein be primed by cellular proteases at the S’ site. 

SARS-CoV is known to be able to enter host cells by both directly fusing with the host 

membrane as well as through the endosomal pathway via cathepsin B and L (CatB/L) 

(Matsuyama et al., 2010). SARS-CoV can also utilize the cell surface protease transmembrane 

protease serine type 2 (TMPRSS2) that belongs to the type II transmembrane serine protease 

family. Although SARS-CoV utilizes both host cell entry pathways, it appears that the TMPRSS2 

pathway is the major route of infection of SARS-CoV in the lungs. However, in the absence of 

TMPRSS2, SARS-CoV can also employ the endosomal late entry route for infection, as SARS-

CoV viral spread is still detected in the alveoli of TMPRSS2 knockout mice (Iwata-Yoshikawa et 

al., 2019). Unlike other soluble serine proteases, TMPRSS2 is anchored on the plasma 

membrane and localized with ACE2 receptors on the surface of airway epithelial cells (Shulla et 

al., 2011). This colocalization makes the lungs particularly susceptible to infection. TMPRSS2 

cleavage of S protein might also promote viral spread and pathogenesis by diminishing viral 

recognition by neutralizing antibodies. The cleavage of S protein can result in shedding of SARS 

S fragments that could act as antibody decoys (Glowacka et al., 2011). Although TMPRSS2 
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affects the entry of virus but not the other phases of virus replication, only a small amount of S 

protein needs to be cleaved to enable viral or cell-cell membrane fusion, even when minute or 

undetectable amounts of ACE2 is available (Shulla et al., 2011). In keeping with this, the 

expression and distribution of TMPRSS2, but not ACE2, correlates with SARS-CoV infection in 

the lungs. SARS-CoV studies have shown that TMPRSS2 cleaves the S protein following 

receptor binding, which causes conformational changes that expose the S’ cleavage site 

(Glowacka et al., 2011). This confers a great advantage to the viral protein by protecting the 

activating cleavage site from premature proteolysis and yet, ensuring that efficient cleavage 

occurs upon binding to the receptor on target cells (Shulla et al., 2011). Similarly, in the case of 

SARS-CoV-2, the host cell TMPRSS2 primes the S protein, and enhances entry and infection 

(Hoffmann et al., 2020a; Matsuyama et al., 2020b). SARS-CoV-2 may also utilize other host 

proteases such as trypsin for S protein activation (Ou et al., 2020). Similar to SARS-CoV, 

SARS-CoV-2 can also enter host cells through the endosomal pathway via cathepsins 

(Hoffmann et al., 2020a; Ou et al., 2020). Unlike SARS-CoV, the S protein of SARS-CoV-2 has 

a furin cleavage site at the S1/S2 boundary similar to MERS-CoV (Walls et al., 2020) (Hoffmann 

et al., 2020a), which likely sensitizes S proteins to the subsequent activating proteolysis 

occurring on susceptible target cells, facilitates virus entry and infection, and potentially 

increases viral transmissibility (Qing and Gallagher, 2020). Since SARS-CoV-2 can be activated 

by an extensive range of proteases, and given that a varied number of proteases exist on the 

cell surface of different cell types, SARS-CoV-2 has the capacity to infect a wide range of cells 

(Tang et al., 2020). Thus, it is an opportunistic virus that can utilize multiple pathways of host 

cell entry and infection. It is conceivable that successful treatment of COVID-19 may require a 

cocktail of drugs that target multiple mechanisms of action as historically seen for the treatment 

of HIV infection; see review (Maeda et al., 2019). 
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Drug development strategies  

For negative-sense RNA viruses, approved therapies are currently available only for 

rabies virus, respiratory syncytial virus, and influenza virus (Hoenen et al., 2019). Since there 

are many functional similarities between SARS-CoV, SARS-CoV-2, and MERS-CoV, it is 

reasonable to screen drugs that were even moderately effective against SARS-CoV and MERS-

CoV for SARS-CoV-2. These broad-spectrum anti-coronavirus drugs could also be used against 

future emerging coronavirus infections. In particular, any such drugs that have an IC50 in the low 

nanomolar range, (preferably less than 100 nM) with high efficacy in inhibiting viral infection in 

vitro would be most advantageous. Drug repurposing has been used in response to emerging 

infectious diseases to rapidly identify potential therapeutics. If FDA-approved drugs currently on 

the market for other diseases demonstrate anti-SARS-CoV-2 activity, they could be repurposed 

for COVID-19 treatment. Several groups have identified compounds with anti-SARS-CoV-2 

activity by repurposing select FDA-approved drugs (Choy et al., 2020; Jeon et al., 2020; Wang 

et al., 2020b). In addition, high-throughput drug repurposing screens have also been 

successfully used to identify such compounds (Table 1). The National Center for Advancing 

Translational Sciences also provides an online open science data portal for COVID-19 drug 

repurposing (https://ncats.nih.gov/expertise/covid19-open-data-portal) (Brimacombe et al., 

2020).  

For compound screening with large scale libraries and molecular target-based assays, 

BSL-2 laboratories are commonly used. These assays take longer to develop but are usually 

without risk of infectivity to humans and are capable of higher throughput than live SARS-CoV-2 

virus assays requiring BSL-3 facilities. However, the efficacy of active compounds identified 

from such high throughput screening (HTS) needs to be confirmed with live SARS-CoV-2 virus 

assays done in the BSL-3 environment. For example, virus pseudoparticles that contain viral 

structural proteins without the viral genome can be used to assay viral entry mechanisms. Cell 
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lines expressing viral replicons that contain portions of the viral genome with reporter genes but 

without viral structure genes can also be used to assay viral replication mechanisms. These 

non-viral assays used for viral entry or replication are not infectious and can be used in a BSL-2 

facility for screening large compound collections. This strategy has been used to screen 

compounds for BSL-3/4 viruses such as EBOV (Kouznetsova et al., 2014; Tscherne et al., 

2010), Lassa virus (Cubitt et al., 2020), SARS and MERS-CoV (de Wilde et al., 2014; Dyall et 

al., 2014). Recently, Letko et. al. showed chimeric S proteins containing RBD of SARS-CoV-2 

can confer receptor specificity to the full S protein sequence (Letko et al., 2020). This approach 

of non-conventional pseudotyping method is cost effective and can provide a faster way to 

screen viral-host interactions.  

Therapeutic targets for COVID-19 can be directed towards the SARS-CoV-2 virus and 

its proteins or the host cell targets. Prevention of virus-host associations can fall in either of the 

two categories. Drugs targeting viral proteins have a major advantage as they could potentially 

have higher specificity against the virus while having minimal adverse effects on humans. 

However, drug resistance may develop rapidly after treatment, particularly in RNA viruses 

where mutations occur frequently. Conversely, therapeutics targeting host cells may slow the 

development of drug resistance as mutations in host cells are relatively rare (Hoenen et al., 

2019). Importantly, drugs targeting host cells have greater potential for adverse effects. Possible 

treatment options under investigation for the prevention and control of SARS-CoV-2 infections in 

both categories are discussed below.  

 

SARS-CoV-2 viral entry inhibitors  

Antibodies 
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Neutralizing antibodies can be used to prevent viral cell surface receptor binding to block 

viral entry. After viral entry, the viral replication cycle concludes in the assembly and budding of 

new viral progeny at the host-cell surface (Murin et al., 2019). These processes can be 

disrupted by neutralizing antibodies which bind to the viral glycoprotein to block viral egress 

(Murin et al., 2019). Thus, neutralizing antibodies can prevent viral entry as well as viral release, 

thereby blocking the infection of neighboring cells. In vitro neutralization assays followed by in 

vivo protection in an animal model was the standard workflow for choosing neutralizing 

antibodies against filoviruses such as the EBOV, which emerged as an outbreak in 2014 in 

West Africa (Saphire et al., 2018). A glycoprotein-targeting cocktail of antibodies rather than a 

single antibody design against EBOV was shown to be superior and is currently being used in 

areas of outbreaks (Hoenen et al., 2019). Similarly, several anti-influenza monoclonal antibodies 

are currently in various stages of clinical development, and most are directed towards the viral 

Hemagglutinin (HA) glycoprotein (Corti et al., 2017). For both EBOV and influenza, some 

broadly reactive antibodies lacking in vitro neutralizing activity have shown in vivo efficacy under 

prophylactic settings and thus, there is not a precise correlation between in vitro activities and in 

vivo protection (Corti et al., 2017; Tian et al., 2020). Neutralizing antibodies designed against 

SARS-CoV and MERS-CoV could potentially be effective against SARS-CoV-2. Several 

monoclonal antibodies targeting S protein of SARS-CoV and MERS-CoV have shown promising 

results in neutralizing infection both in vitro and in rodent models (Shanmugaraj et al., 2020). 

Since the structure of SARS-CoV-2, SARS-CoV, and MERS-CoV S protein and monoclonal 

antibody interaction sites have been determined, neutralizing antibodies against S protein of 

SARS-CoV-2 promises to be a viable therapeutic option.  

Convalescent plasma therapy using plasma from recovered COVID-19 patients to treat 

severe cases of COVID-19 has shown positive results. Convalescent plasma contains 

neutralizing antibodies specifically against the SARS-CoV-2 virus, and confers passive immunity 
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to the recipient, thereby improving clinical outcomes when used prophylactically and in infected 

patients (Casadevall and Pirofski, 2020). RBD-specific monoclonal antibodies derived from 

SARS-CoV-2 infected individuals was shown to have neutralizing activities against both 

pseudoviruses bearing the S protein as well as live SARS-CoV-2 viruses (Ju et al., 2020). 

Treatment with convalescent plasma was shown to be successful in a small cohort of patients 

(Duan et al., 2020; Shen et al., 2020). Clinical trials are currently underway to determine 

whether COVID-19 convalescent plasma or ‘hyperimmune plasma’ might be an effective 

treatment therapy for COVID-19. The Takeda Pharmaceutical Company has announced 

investigation into a new plasma derived therapy coined TAK-888 that involves removing plasma 

from COVID-19 survivors and extracting coronavirus-specific antibodies to stimulate a potent 

immune response against SARS-CoV-2 in infected patients (Barlow et al., 2020). 

Proteins, peptides, small molecule compounds and drugs 

Viral entry can also be blocked by proteins, peptides, or small molecule compounds that 

bind to the viral S protein, thereby preventing the interaction of virus and host membrane. 

Recombinant soluble ACE2, which lacks the membrane anchor and can circulate in small 

amounts in the blood, can act as a decoy to bind SARS-CoV-2 S proteins, and thus prevent viral 

entry (Lei et al., 2020). Clinical grade human recombinant soluble ACE2 was shown to 

successfully inhibit SARS-CoV-2 infection in engineered human blood vessel organoids and 

human kidney organoids (Monteil et al., 2020). Studies also show that soluble human ACE2 can 

significantly decrease SARS-CoV-2 viral entry (Ou et al., 2020) and recombinant proteins 

designed against the RBD of S protein of SARS-CoV-2 can successfully block entry of virus into 

cells (Tai et al., 2020) (Zhang et al., 2020). Another class of proteins that may be useful in 

blocking viral entry into cells are lectins, which bind specific carbohydrate structures but lack 

intrinsic enzymatic activity (Mitchell et al., 2017). Lectins may inhibit viral entry and subsequent 

replication by interacting with coronavirus S proteins that are heavily glycosylated (Mitchell et 
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al., 2017). Griffithsin is a lectin protein isolated from marine red algae, and has proven antiviral 

properties (Mori et al., 2005). Griffithsin can potently inhibit viral entry by binding to the S 

glycoprotein and prevent SARS-CoV infection both in vitro and in vivo with minimal cytotoxic 

effects (O'Keefe et al., 2010). Similarly, griffithsin was shown to inhibit MERS-CoV infectivity 

and production in vitro with no significant cytotoxicity (Millet et al., 2016). Another lectin protein 

known as UDA was shown to significantly decrease mortality rates in a mouse model of SARS-

CoV infection and was able to impede viral entry and replication (Day et al., 2009) (Kumaki et 

al., 2011). However, UDA requires higher concentrations than griffithsin to achieve similar 

inhibitions of viral infections (O'Keefe et al., 2010) and high doses of UDA has toxic effects in 

mice (Kumaki et al., 2011). Based on these in vitro as well as preclinical results, griffithsin may 

well prove to be an effective SARS-CoV-2 entry inhibitor.  

Peptides can also be designed against the highly conserved heptad repeat region 

located in the S2 subunit of the S protein, which can interfere with viral and host cellular 

membrane fusion. A lipopeptide, EK1C4, exhibited highly potent inhibitory activity against 

SARS-CoV-2 S-mediated membrane fusion in vitro and in vivo (Xia et al., 2020). Small 

molecules that block the binding of S protein to ACE2 can also be investigated as therapeutics 

for COVID-19 treatment. For example, the CCR5 antagonist maraviroc, which was approved in 

2007 for the treatment of HIV infections, blocks HIV from binding to its co-receptor CCR5. Thus, 

a specific ACE2 inhibitor may be developed that blocks the binding of SARS-CoV-2 S protein to 

ACE2.  

Additionally, the inhibitors of host cell proteases such as TMPRSS2, furin, and cathepsin 

that prime viral structure proteins for membrane fusion may also prevent SARS-CoV-2 entry. 

Developing these types of inhibitors as therapeutics may present challenges due to differentially 

expressed proteases in different tissues. Therefore, developing a broad-spectrum protease 

inhibitor against SARS-CoV-2 might be beneficial. For example, the TMPRSS2 inhibitor 
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camostat mesylate can block the entry of SARS-CoV-2 into Calu-3 human lung epithelial cells 

(Hoffmann et al., 2020a), but a combination of camostat mesylate and Cathepsin B/L inhibitor E-

64-d is required to completely block viral entry into Caco-2 cells (Hoffmann et al., 2020a). 

Nafamostat is another example of a serine protease inhibitor that can inhibit SARS-CoV-2 entry 

and infection (Hoffmann et al., 2020b; Wang et al., 2020a). However, compared to camostat 

mesylate, nafamostat blocks viral entry and replication with significantly greater efficacy 

(Hoffmann et al., 2020b; Shrimp et al., 2020). Nafamostat, approved as a treatment for 

pancreatitis in Japan and Germany with no major adverse effects, may also have anti-

inflammatory properties that could aid COVID-19 patients (Hoffmann et al., 2020b); clinical trials 

will determine its suitability as a COVID-19 therapeutic (Table 2). 

Viral entry may also be inhibited by Umifenovir (also known as arbidol), which is 

approved for the treatment of influenza in Russia and China. Arbidol potently blocks SARS-

CoV-2 entry into cells as well as inhibits post-entry stages of infection (Wang et al., 2020b). The 

lower EC50 value of 4.11 μM against SARS-CoV-2 compared to influenza viruses gives arbidol 

the potential to be a clinically effective therapeutic against SARS-CoV-2 (Wang et al., 2020b). 

One clinical trial is set to determine the effectiveness of arbidol for the treatment of COVID-19 

induced pneumonia (Table 2) and several others as a combination therapy. In addition, 

chlorpromazine, a FDA-approved antipsychotic and clathrin-dependent endocytosis inhibitor, 

also has anti-SARS-CoV-2 activity in vitro (Plaze et al., 2020) and is currently under 

investigation as a potential therapeutic for COVID-19 (Table 2).  

 

Viral replication inhibitors  

Inhibitors of viral nucleic acid synthesis are the best represented class of antiviral drugs 

that suppress viral replication in host cells (Hoenen et al., 2019). The most successful 3CLpro 
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inhibitor is lopinavir, a protease inhibitor used to treat HIV infections that is usually marketed as 

a ritonavir-boosted form (lopinavir–ritonavir) (Zumla et al., 2016). Preliminary in vitro studies 

with ritonavir on SARS-CoV-2 infection have not shown much promise (Choy et al., 2020). 

However, there are clinical trials underway to test the efficacy of this drug in humans (Table 2). 

Specifically repurposing any inhibitors designed against SARS-CoV or MERS-CoV 3CLpro for 

SARS-CoV-2 may prove challenging. Although there is a high degree of sequence conservation 

in the active sites of SARS-CoV and MERS-CoV 3CLpro enzymes, most SARS-CoV 3CLpro 

inhibitors are inactive against MERS-CoV, indicating other important structural differences 

(Needle et al., 2015).  

RdRP is another target for SARS-CoV-2 drug development. The sequence encoding the 

structure of RdRP in SARS‐CoV, MERS, and SARS‐CoV2 was found to be remarkably similar 

(Morse et al., 2020). Several RdRP inhibitors originally developed for other viruses are in active 

clinical trials to treat COVID-19 infections (Table 2). Remdesivir, a prodrug of an adenosine 

analog, was originally developed for the treatment of EBOV and has broad-spectrum antiviral 

activities against RNA viruses. Remdesivir successfully improved outcomes when used 

prophylactically and therapeutically in animals models of MERS (de Wit et al., 2020) as well as 

SARS (Sheahan et al., 2017). Treatment with remdesivir during early infection also showed 

significant clinical benefits in non-human primates infected with SARS-CoV-2 (Williamson et al., 

2020). In COVID-19 patients, clinical improvements without adverse effects were noted when 

treated with remdesivir on a compassionate-use basis (Grein et al., 2020). In a randomized, 

controlled trial known as the Adaptive COVID-19 Treatment Trial (ACTT), COVID-19 patients 

that received remdesivir had significantly shorter recovery and mortality rates with no serious 

adverse events (Beigel et al., 2020). Due to these promising preliminary reports, remdesivir was 

recently granted emergency use authorization for the treatment of COVID-19 by FDA.  
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Other RdRP inhibitors include favipiravir and ribavirin. Favipiravir, a prodrug guanosine 

analog, is approved for the treatment of influenza in Japan and China. Favipiravir is not reported 

to have significant adverse effects, however it may increase the risk for teratogenicity and 

embryotoxicity (Furuta et al., 2017). Ribavirin, another guanosine analog prodrug, is used for 

the treatment of severe respiratory syncytial virus infection, hepatitis C viral infection, and viral 

hemorrhagic fevers (Tu et al., 2020; Zumla et al., 2016). However, when used as a treatment for 

SARS-CoV in both preclinical (Day et al., 2009) and clinical settings (Stockman et al., 2006), 

ribavirin did not improve outcomes but instead had adverse effects. In addition, of these three 

drugs, only remdesivir has shown potent inhibition of SARS-CoV-2 infection in vitro (Wang et 

al., 2020a) (Choy et al., 2020). Therefore, pursuing specific SARS-CoV-2 RdRP inhibitors is a 

valid approach for COVID-19 drug development, but the efficacy and toxicities of these drugs 

will need to be closely scrutinized.    

Recently, ivermectin was shown to potently inhibit SARS-CoV-2 in vitro with a single 

treatment (Caly et al., 2020). Ivermectin is an FDA-approved drug for the treatment of parasitic 

infections. However, its suitability as a COVID-19 treatment is currently being examined in 

several clinical trials, including one that will test asymptomatic patients (ClinicalTrials.gov 

Identifier: NCT04407507). 

Four additional enzymes specific to SARS-CoV-2 -  helicase (Nsp-13), 3’-5’ exonuclease 

(Nsp-14), Uridine-specific endoribonuclease (Nsp-15), and RNA-cap methyltransferase (Nsp-

16) - may be considered as key targets for drug discovery (Gordon et al., 2020). In single 

stranded positive sense RNA viruses such as SARS-CoV-2, RNA helicases are essential for 

viral genome transcription and protein translation. Thus, inhibitors of viral helicases are 

attractive as therapeutic agents. At least one molecule inhibitor of SARS-CoV helicase without 

cell toxicity has been previously identified (Cho et al., 2015). However, despite significant efforts 

being made towards their development, helicase inhibitors are currently not available for clinical 
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use (Briguglio et al., 2011). The SARS-CoV-2 exonuclease (Nsp-14) cleaves nucleotides at 3’ 

end of RNA strand and is required for RNA replication (Romano et al., 2020). Uridine-specific 

endoribonuclease (Nsp-15, EndoU) is an endoribonuclease that hydrolyzes single-stranded as 

well as double-stranded RNA at uridine residues. EndoU is highly conserved in all 

coronaviruses, which alludes to its functional importance (Hackbart et al., 2020). Although its 

precise role in viral pathogenesis is not well established, it likely plays a role in evading host 

recognition (Deng and Baker, 2018). A recent study confirmed that EndoU contributes to 

delayed type I interferon response by cleaving 5′-polyuridines from negative-sense viral RNAs, 

which otherwise activate host immune sensors (Hackbart et al., 2020). There are currently no 

approved inhibitors for viral specific 3’-5’ exonuclease or EndoU. In coronaviruses, RNA-cap 

methyltransferase (Nsp-16) forms a complex with its cofactor nsp-10 (a 2-O-methyltransferase) 

for the addition of a cap to the 5’-end of viral RNA. This addition enables the virus to escape 

innate immune recognition in host cells as well as enhance viral RNA translation (Wang et al., 

2015). Unfortunately, there are currently no effective inhibitors or approved drugs for these 

enzymes that may be used as targets for antiviral drug development.  

 

Host cell and viral targets for antiviral drug development  

Viral replication requires a number of cellular proteins and machinery. Inhibiting host cell 

protein function may effectively combat viral infection. These host targets include the host cell 

proteases TMPRSS2, furin, and cathepsin and ACE2 receptor discussed above. Additionally, 

the host cell autophagy pathway is used by some coronaviruses for viral replication and viral 

assembly. Since coronaviruses may hijack autophagy mechanisms for viral double membrane 

vesicle formation and replication, the inhibition of cellular autophagy may be a useful antiviral 

strategy (Abdoli et al., 2018; Yang and Shen, 2020). Although the drugs targeting host cell 

proteins are more likely to cause adverse effects, patients might tolerate a short 7- to 14-day 
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treatment regimen. Other complicating factors for targeting host proteins is the redundancy of 

human cellular function pathways and variations in different cells or tissues, which may reduce 

correlations between in vitro and in vivo efficacy studies. This issue could be overcome by 

utilizing a drug combination therapy with different mechanisms of action such as that seen with 

the successful treatment of HIV; see review (Maeda et al., 2019). Alternatively, a single drug 

with multiple activities against both viral targets and host viral replication machineries may be 

more effective in treating SARS-CoV-2 infection than drugs acting on one viral target. These 

drugs with polypharmacology against SARS-CoV-2 infection are discussed below: 

 Chloroquine/hydroxychloroquine (CQ/HCQ) is a well-known FDA-approved antimalarial 

drug that can inhibit viral infections via multiple mechanisms. The mechanism of inhibition likely 

involves the prevention of endocytosis or rapid elevation of the endosomal pH and abrogation of 

virus–endosome fusion (Devaux et al., 2020). CQ/HCQ also has anti-inflammatory properties, 

which has led to its clinical use in conditions such as rheumatoid arthritis, lupus, and sarcoidosis 

(Savarino et al., 2003). After the advent of SARS in 2003, Savarino et. al postulated that the 

antiviral as well as anti-inflammatory properties of CQ/HCQ might be beneficial for SARS 

treatment. In addition, viruses may engage host autophagic processes to enhance replication 

(Yang and Shen, 2020). Since CQ is a known inhibitor of autophagic flux, it may be beneficial in 

inhibiting viral replication. CQ was shown to be highly effective in the control of SARS-CoV-2 

infection in vitro (Wang et al., 2020a). It can also potentially interfere with the terminal 

glycosylation of ACE2 receptor expression, thereby preventing SARS-CoV-2 receptor binding 

and subsequent spread of infection (Barlow et al., 2020). Andreani et al. found that HCQ 

significantly suppresses virus replication, and a combination of HCQ and azithromycin exhibits 

synergistic effects (Andreani et al., 2020). However, the FDA has warned that the use of 

CQ/HCQ, particularly when used in conjunction with azithromycin, can cause abnormal heart 

rhythms such as QT interval prolongation and ventricular tachycardia. As of June 15th, 2020, 
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FDA has revoked the emergency use authorization of these drugs for the treatment of COVID-

19. Several clinical trials are underway to test the efficacy of CQ/HCQ in different settings, 

although a few have been withdrawn. In addition, a drug repurposing screen performed in 

different cell lines indicates that viral entry in lung epithelial Calu-3 cells is pH-independent 

(Dittmar et al., 2020). Therefore, CQ may not be effective as a treatment against SARS-CoV-2. 

Emetine, approved for amoebiasis, has broad antiviral activity against Zika virus, EBOV 

virus, Dengue virus, human cytomegalovirus, and HIV in vitro and in vivo. Emetine may elicit 

cardiotoxic and myotoxic effects with high doses; however, its potency as antiviral is significantly 

lower than doses that cause toxicity (Yang et al., 2018). Emetine can act on multiple 

mechanisms such as viral RdRp inhibition, host cell lysosomal function, and blocking viral 

protein synthesis via inhibition of host cell 40S ribosomal protein S14 (Yang et al., 2018). A 

combination of 6.25 μM remdesivir and 0.195 μM emetine showed synergistic effects in vitro 

against SARS-CoV-2 infection, but some of the compounds currently undergoing clinical trials 

such as ribavirin and favipiravir did not show clear antiviral effects (Choy et al., 2020). This 

suggests that combination therapy may be a superior therapeutic option for the treatment of 

COVID-19 due to synergistic effects.  

Niclosamide, an antiparasitic drug approved by FDA, has shown great potential for 

repurposing to treat a variety of viral infections including SARS-CoV and MERS-CoV by 

targeting both host and viral components (Xu et al., 2020a). Preliminary studies showed that 

niclosamide has potent antiviral activity against SARS-CoV-2 in vitro with and IC50 of 0.28 μM 

(Jeon et al., 2020). In addition, niclosasmide exhibits very low toxicities in vitro and in vivo 

(Chen et al., 2018), making it an attractive candidate.  

Nitazoxanide is another antiparasitic prodrug approved by FDA with antiviral properties 

and is reportedly well tolerated in patients. Although the mechanisms of viral inhibition are not 

well understood, it is thought to target host-regulated pathways and not viral machinery 
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(Rossignol, 2016). In keeping with this, it was shown that nitazoxanide significantly inhibits 

EBOV in vitro by enhancing host antiviral responses (Jasenosky et al., 2019). An in vitro study 

determined that nitazoxanide can inhibit SARS-CoV-2 at low-micromolar concentrations with a 

EC50 value of 2.12 μM (Wang et al., 2020a). Several trials are currently ongoing to determine its 

clinical efficacy as a treatment for COVID-19 patients or as a post exposure prophylaxis 

therapy.   

 

Prophylactic treatment for SARS-CoV-2 infection 

SARS-CoV-2 infects humans mainly through inhalation of virally contaminated aerosol 

droplets from infected subjects. Thus, nasal sprays containing agents that can neutralize the 

virus or block viral entry into host cells is one approach to prevent SARS-CoV-2 infection. There 

are preliminary reports that an antihistamine nasal spray can inhibit SARS-CoV-2 infection in 

vitro (Ferrer and Westover, 2020). In rhesus monkeys, a nasal spray formulation of IFN-alpha2b 

was successful in decreasing the severity of SARS-CoV viral infection (Gao et al., 2005). Meng 

and colleagues also reported that a nasal drop formula of recombinant human interferon 

alpha1b (rhIFN-α) prevented SARS-CoV-2 infection in an open label clinical trial (Meng et al., 

2020). Additionally, it might be possible to achieve high local drug concentrations for drugs with 

low systemic distribution and/or dose limiting toxicity when delivered systemically. Therefore, 

nasal administration of drugs merit further studies as a useful strategy in preventing or reducing 

SARS-CoV-2 infection. Phytochemicals from naturally occurring plants, particularly lectins and 

polyphenols, might also prove to be valuable candidates as prophylactic or therapeutic 

treatment against SARS-CoV-2 (recently reviewed in (Mani et al., 2020)).  

 

Other treatments in clinical trials for COVID-19 
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 Several drugs that target viral life cycles directly as well as host biology are currently 

being investigated for COVID-19 and are summarized in Table 2 and depicted in Figure 1. As 

previously discussed, in patients with severe cases of COVID-19, excessive inflammatory 

responses and cytokine release likely contributes to the severity of disease stimulating lung and 

other systemic injuries. The early modulation of these responses may help reduce the risk of 

acute respiratory distress (Barlow et al., 2020). To this end, therapies such as inhibitory human 

monoclonal antibodies against cytokines such as interleukin-6 (IL6) are also being considered to 

help diminish the severity of excessive physiologic response to SARS-CoV-2. The efficacy of 

glucocorticoids, such as methylprednisolone or dexamethasone for the treatment of COVID-19 

is yet to be determined. However, preliminary reports indicate that dexamethasone may be 

beneficial in critically ill COVID-19 patients (Horby et al., 2020). In addition, ciclesonide, an 

inhaled corticosteroid might also prove an effective therapy as it has low cytotoxicity and can 

potently suppress SARS-CoV-2 growth in vitro (Jeon et al., 2020; Matsuyama et al., 2020a).  

 

Vaccines for SARS-CoV-2  

Treating COVID-19 with drugs or convalescent plasma does not confer immunity, hence 

there remains an unmet need for immediate and long-term disease prevention in the form of a 

vaccine. According to WHO, there are over 100 SARS-CoV-2 vaccine candidates under 

preclinical development comprising of: 1) DNA-based, which contains DNA encoding 

immunogen in plasmids 2) inactivated-whole virus, which are heat or chemically inactivated 3) 

live-attenuated, which contain viable but weakened virus 4) RNA-based, where an RNA 

encoding the immunogen is directly introduced into the host 5) Replicating and non-replicating 

viral vector-based, where viral vectors are used to introduce DNA-encoding immunogenic into 

the host 6) protein subunits, which contains portions of a pathogen 7) virus-like particle-based 

vaccines, which contain non-pathogenic virus-like nano particles similar in composition to the 
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virus of interest (https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-

vaccines). Several vaccines from these categories are also under clinical investigation. The 

types of vaccines and their platforms used are summarized in Table 3. The advantages and 

disadvantages of using different platforms of vaccines vary, and are reviewed elsewhere 

(Amanat and Krammer, 2020).  

There are high expectations for these vaccines to be available for distribution within a 

year. Currently, there is published data from only one study led by. Undoubtedly, an effective 

vaccine is the ultimate tool for COVID-19 disease prevention, but there are some important 

aspects to consider. SARS-CoV and MERS-CoV emerged almost 20 and 10 years ago, 

respectively. To this date, there are no approved vaccinations to prevent either of these 

diseases, although there are several candidates in the unlicensed preclinical stage. Effective 

vaccines are still not available for many infectious diseases such as malaria, HIV, EBOV and 

Zika virus. Vaccine development typically takes 10 to 15 years and is associated with high costs 

(Zheng et al., 2018). In addition, rapid mutations arising in viral RNA could potentially render 

these vaccines ineffective. RNA viruses are known to mutate with high frequency, but thus far 

there does not seem to be many differences in the S protein amino acid residue sequences in 

emergent SARS-CoV-2 variants from different countries (Robson, 2020). Antibodies induced by 

vaccination could also potentially increase the risk and severity of disease in subsequent host–

pathogen encounters (Kulkarni, 2020). The production of these antibodies may sometimes 

prove beneficial to the virus instead of the host by facilitating viral entry and replication in the 

target cell in a phenomenon known as antibody-dependent enhancement (ADE) of infection 

(Kulkarni, 2020). ADE has been noted in cases of dengue virus, HIV, respiratory syncytial virus 

and influenza virus, but has not been confirmed for SARS or EBOV (Kulkarni, 2020). However, 

preliminary results in animal models of SARS-CoV-2 infection are promising. In both rodents 

(Corbett et al., 2020) as well as non-human primates (Gao et al., 2020), vaccinations against 
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SARS-CoV-2 have shown protection without any observable ADE. In addition, positive 

outcomes have been noted in participants of small study in terms of tolerability and 

immunogenicity (Zhu et al., 2020).  

 

Perspectives and Conclusion 

For safe and effective viral therapeutics or vaccine development, it necessitates that 

data initially be obtained from preclinical in vitro or animal models. However, translation of 

preclinically developed drug candidates are often not reproducible in human clinical trials 

(Seyhan, 2019). For example, remdesivir efficiently suppressed EBOV replication in vitro with 

nanomolar activity and also protected 100% of infected animals from mortality (Warren et al., 

2016). However, these results were not recapitulated in humans for the treatment of EBOV 

infections and the remdesivir treatment group was terminated due to low efficacy and increased 

toxicities (Mulangu et al., 2019). In general, viral infections are highly dependent on host cells. 

Therefore, successful clinical translation of SARS-CoV-2 drugs would require careful 

considerations of the testing platform. These might include suitable cell models for in vitro viral 

infection assays as well as human induced pluripotent stem cell derived airway and gut 

organoids.      

SARS-CoV infection was curtailed by rigorous isolation, but MERS-CoV infection is still a 

concern, albeit at lower infectious rate than SARS-CoV-2. SARS-CoV-2 infections present a 

clinical challenge as it is highly transmissible in part due to asymptomatic transmission. 

Therefore, the approach taken with SARS-CoV would certainly help curtail the spread of SARS-

CoV-2, but with the current spread of disease, such large-scale isolation and quarantine efforts 

have proven difficult. Therefore, better therapeutic options are essential. Multi-target treatment 

approaches of drug combination therapy have been successful with HIV treatment and will likely 
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be a viable therapeutic strategy for the treatment of COVID-19. Combination drug therapy has 

been extensively used for the treatment of HIV, cancer, as well as severe bacterial and fungal 

infections. Recently, COVID-19 patients treated with the triple antiviral drug cocktail lopinavir-

ritonavir-ribavirin with interferon beta-1b compared to lopinavir-ritonavir alone showed significant 

improvements in clinical outcomes (Hung et al., Lancet 2020). In addition, the combination 

drugs elicited no further side effects compared to the two-drug controls. Combination drug 

therapy may increase toxicity compared to single drug treatment. A meta-analysis of published 

trials evaluated the efficacy and toxicity of two-drug full dose combination therapy versus a 

single full dose drug for the treatment of rheumatoid arthritis (Felson et al., 1994). The study 

concluded that combination therapy led to a 9% patient withdrawal rate due to significant 

increases in adverse effects. Therefore, with combination therapy approaches, drugs with dose 

limiting toxicity as monotherapies can be utilized with lower individual drug doses, thereby 

reducing toxicity and synergistically enhancing therapeutic efficacy (Hoenen et al., 2019; Sun et 

al., 2016). As an example, several FDA-approved drugs found in a drug repurposing screen 

showed activity against EBOV, but were not clinically useful as their plasma concentrations 

were not high enough to inhibit infection in humans (Kouznetsova et al., 2014). However, drug 

combination therapy using three of these drugs at low concentrations were able to effectively 

block EBOV infection in vitro (Sun et al., 2017). Thus, synergistic drug combinations can be 

particularly useful for drug repurposing (Zheng et al., 2018). For COVID-19, drug combination 

therapies with multiple agents that have different mechanisms of action including inhibition of 

viral entry and replication, as well as inhibition of host immune responses would be a practical 

and useful approach for disease intervention.   
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Figure Legends 

Figure 1. SARS-CoV- 2 spike (S) protein binds the cell surface receptor ACE2 on host cells. 

Viral genome is delivered into the host cytosol by: 1) directly fusing with the plasma membrane 

after being cleaved and activated by the serine protease TMPRSS2 or 2) using the host cell’s 

endocytic machinery in which the endocytosed virions are subjected to an activation step in the 

endosome. The viral genome also functions as the messenger RNA, which is translated into 

proteins such as 3CLPro, PLpro and RdRp, by host cell machineries. SARS-CoV-2 genome 

also encodes the structural proteins (S), envelope (E), membrane (M), nucleocapsid (N). RdRP 

is essential for viral replication and therefore is an attractive target for anti-SARS-CoV-2 drugs. 

Drugs that are currently in clinical trials are shown here in red, along with their targets of viral life 

cycle or viral-host interactions.  
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Table 1. High-throughput drug repurposing screens against SARS-CoV-2  

a
Proprietary library 

 

  

Cell line  Assay type   Strain of SARS-CoV-2  Library screened  Reference 

Caco-2       CPE  

 

 Unspecified   5632 compounds including 3488 

compounds which have 

undergone clinical investigations
a
 

 (Ellinger et al., 2020) 

Vero E6 

 

 Primary 

screen: CPE  

Follow up: N 

protein 

immuno-

fluorescence 

 HKU-001a in 1’ 

screen 

USA-WA1/2020 for 

follow up 

 LOPAC 1280 and ReFRAME
a
 

library 

 (Riva et al., 2020) 

VeroE6  CPE   BavPat1 strain  Prestwick Chemical Library 

(1,520 approved drugs) 

 (Touret et al., 2020) 
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Table 2: Clinical therapies for COVID-19 

Compound/treatment Target Phase 
ClinicalTrials.gov 

Identifier 

Approved for 

other clinical 

treatment 

Status 

Camostat Mesilate Serine proteases, ex. 

TMPRSS2 

Phase 1/2 NCT04321096 Acute pancreatitis 

(Japan) 

Ongoing 

Chlorpromazine Clathrin-mediated 

endocytosis 

Phase ½ 

Phase 3 

NCT04354805 

NCT04366739 

Schizophrenia, 

manic-

depression, 

nausea, anxiety 

Not yet recruiting 

Not yet recruiting 

Ciclesonide, an 

inhaled corticosteroid 

Viral nonstructural 

protein 15 encoding 

an endonuclease 

and host process 

Phase 2 NCT04330586 Asthma and 

allergic rhinitis 

(Schaffner and 

Skoner, 2009) 

Not yet recruiting 

Favipiravir (Avigan) 

with Tocilizumab 

RdRp 

IL-6 

Not 

Applicable 

NCT04310228 Influenza (Japan) Ongoing 

Hydroxychloroquine 

and chloroquine 

Antiviral properties 

unclear 

Various Multiple  Malaria, 

Autoimmune 

diseases (ex. 

lupus, rheumatoid 

arthritis) 

Varies 

Interferon Alpha-1b 

nasal drops 

Host immune 

response to virus 

Phase 3 NCT04320238 None Ongoing 

Ivermectin Viral transport into 

host nucleus  

Varies Multiple Antiparasitic  Ongoing  

Lopinavir + Ritonavir 

(Kaletra) 

3CLpro Phase 4 NCT04252885 HIV Ongoing; 

preliminary results 

show no benefit 

beyond standard 

care (Baden and 

Rubin, 2020). 
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Lopinavir-Ritonavir + 

Ribavirin and 

Interferon beta-1b  

3CLpro, 

Viral polymerase, 

Host immune 

response to virus 

Phase 2 NCT04276688 HIV Completed; 

significant 

improvement in 

outcomes (Hung 

et al., 2020) 

Nafamostat Serine protease Phase 1 NCT04352400 Pancreatitis 

(Japan and 

Germany) 

Not yet recruiting 

Niclosamide Viral and host 

processes 

Phase 2 

and 3 

NCT04345419 Anthelminthic 

drug 

Not yet recruiting 

Nitazoxanide Viral and host 

processes 

Various Multiple Antiparasitic drug Ongoing 

Remdesivir RdRp Phase 3 NCT04257656 

NCT04252664 

NCT04292899 

NCT04280705 

HIV Terminated 

Terminated 

Ongoing 

Ongoing 

Tocilizumab or 

Sarilumaub 

human monoclonal 

antibody (mAb) that 

inhibits the 

interleukin-6 (IL-6) 

pathway by binding 

and blocking the IL-6 

receptor 

Various Multiple  Multiple, including 

chimeric antigen 

receptor T cell-

induced cytokine 

release 

syndrome, other 

autoimmune 

conditions 

(Barlow et al., 

2020) 

Ongoing 

Umifenovir (Arbidol) Viral membrane 

fusion of influenza a 

and b 

Phase 4 NCT04260594 Influenza (Russia 

and China) 

Not yet recruiting 
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Table 3: Potential vaccines in clinical trials for COVID-19 as of June 29th, 2020 

Vaccine category Vaccine type Vaccine developer Phase Vaccine identifier  

DNA based DNA plasmid + 

electroporation  

Inovio Pharmaceuticals 

 

Phase 1 

 

NCT04336410  

 

DNA vaccine, GX-19 Genexine Consortium Phase 1  NCT04445389 

Inactivated virus 

 

Inactivated  Beijing Institute of Biological Products Phase 1/2 ChiCTR2000032459 

Inactivated Wuhan Institute of Biological Products Phase 1/2 ChiCTR2000031809 

Inactivated  Sinovac Research & Development Co., 

Ltd 

Phase 1/2 

Phase 1/2 

NCT04352608 

NCT04383574 

Inactivated Chinese Academy of Medical Sciences Phase 1/2 NCT04412538 

Nonreplicating 

viral vector 

 

 Adenovirus type 5 CanSino Biological Inc; preliminary 

results (Zhu et al., 2020) 

Beijing Institute of Biotechnology 

Phase 1 

 

Phase 2 

NCT04313127 

 

ChiCTR2000031781 

ChAdOx1-S 

 

 

University of Oxford/AstraZeneca Phase 3 

Phase 2/3  

Phase 2/3 

Phase 1/2  

Phase 1/2  

ISRCTN89951424 

2020-001228-32 

NCT04400838 

2020-001072-15 

NCT04324606  

Adenoviral Gamaleya Research Institute 

 

Phase 1 

Phase 1/2 

NCT04436471 

NCT04437875  

Adeno based Chinese Academy of Medical Sciences  Phase 2 NCT04341389 

NCT04412538 

Protein subunit Recombinant SARS-

CoV-2 trimeric S 

protein subunit 

Clover Biopharmaceuticals 

Inc./GSK/Dynavax 

Phase 1  NCT04405908 

Recombinant protein 

(RBD Dimer) 

Anhui Zhifei Longcom Biologic 

Pharmacy Co., Ltd/ The Second 

Affiliated Hospital of Chongqing Medical 

University/Beijing Chao Yang Hospital 

Phase 1 NCT04445194 
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Source: who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines; clinicaltrials.gov; clinicaltrialsregister.eu 

 

Full length 

recombinant 

SARS CoV-2 

glycoprotein 

nanoparticle 

vaccine 

adjuvanted with 

Matrix M 

Novavax  

 

 

 

 

 

Phase 1/2  

 

 

 

 

 

 

 

NCT04368988  

RNA 

 

Messenger RNA in 

lipid nanoparticle  

Moderna/NIH/NIAID; related preclinical 

study (Corbett et al., 2020) 

Phase 1 

Phase 2 

NCT04283461 

NCT04405076 

Messenger RNA in 

lipid nanoparticle 

BioNTech / Fosun Pharma / Pfizer Phase 1/2 

Phase 1 

2020-001038-36 

NCT04368728 

mRNA Curevac Phase 1 NCT04449276 

mRNA People's Liberation Army (PLA) 

Academy of Military Sciences/Walvax 

Biotech. 

Phase 1 ChiCTR2000034112 

Self-amplifying RNA 

in lipid nanoparticle 

Imperial College London Phase 1 ISRCTN17072692 
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Figure 1. Potential therapeutic targets against SARS-CoV-2 currently in clinical trials.  

 

Figure created in BioRender.  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on July 28, 2020 as DOI: 10.1124/jpet.120.000123

 at A
SPE

T
 Journals on A

ugust 6, 2020
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/

